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Abstract 
 Unlike 𝜋, which comes directly from the area or circumference of a circle, 𝑒 seems to be 

an arbitrary concept disconnected from nature at the first glance. So what relevance does this 

irrational constant bear besides bank accounts that only compound their interest continuously? It 

turns out that 𝑒 can be found in something as simple as picking random numbers between 0 and 

1.  

The problem 
 Imagine one is to pick numbers between 0 and 1 until the sum of them gets larger than 1. 

For example, the first number picked is 0.579, and second 0.234; now their sum 0.813 hasn’t 

exceeded 1, so we pick another: 0.9005. 0.9005 + 0.813 = 1.7135 is larger than 1, so we stop 

here. It took us three numbers get a sum larger than 1. 

Then, extending this process, one may want to find out how many numbers he needs on 

average to reach 1. Intuitively, because 0.5 is half way between 0 and 1, and it takes two 0.5 to 

get to 1, one may guess 2. But surprisingly, the answer is 𝑒. After verifying the result on 

computer, I decided to try to find a mathematical proof for this statement. 

Observations 
 To get a handle on the problem, I started with some hypothetical scenarios.  

1. It takes us only one pick to reach 1: 

Only 1 satisfies this, so the probability of such thing happening is 0%. 

2. It takes us two picks to reach 1.  

That means 𝑎 + 𝑏 ≥ 1. Then 𝑎 can be any number, while 𝑏 can be any number satisfies 

𝑏 ≥ 1 − 𝑎.  That means for each number 𝑎, 𝑏 can be any number that is in the range [1 −

𝑎, 1], which gives a probability of (1 − (1 − 𝑎)) = 𝑎. If each 𝑎 ∈ [0,1) has a  
1

|[0,1)|
 

chance of occurrence, then by rule of product for each 𝑎 ∈ [0,1], there is an 
𝑎

|[0,1)|
 chance 

that 𝑏 ∈ [0,1] together with 𝑎 satisfies the condition. Then the full probability of a 

randomly picked pair 𝑎, 𝑏 ∈ [0,1] summing up to one is 

∑
𝑎

|[0,1)|
𝑎∈[0,1)

 

Because 𝑎 has an even distribution over the range [0,1], we can remap it with indexing 

[0,1] = {𝑎𝑖|𝑖 ∈ [|[0,1]|], 𝑎𝑖 =
𝑖

|[0,1]|
}, then we have 



ℙ(2) = ∑
𝑎𝑖

|[0,1)|

|[0,1)|

𝑖=1

= ∫ 𝑥𝑑𝑥

1

0

=
1

2
 

3. It takes us three picks to reach 1.  

Consider numbers 𝑎, 𝑏, 𝑐 ∈ [0,1]; again, for any numbers 𝑎, 𝑏 ∈ [0,1], there must exist 𝑐 

such that 𝑎 + 𝑏 + 𝑐 ≥ 1. Thus, to find a pair (𝑎, 𝑏, 𝑐) ∈ [0,1]3 that suffices the condition, 

one can first choose an arbitrary 𝑎 from [0,1], and an arbitrary 𝑏. And for the third 

choice, since 𝑎 + 𝑏 + 𝑐 ≥ 1, 𝑐 has to suffice 𝑐 ≥ 1 − 𝑎 − 𝑏. This gives 𝑐 an event space 

of [1 − 𝑎 − 𝑏, 1]. Then given a pair of 𝑎, 𝑏 ∈ [0,1], the probability that a randomly 

picked 𝑐 satisfies the condition 𝑎 + 𝑏 + 𝑐 ≥ 1 is 
(1−(1−𝑎−𝑏))

1
= 𝑎 + 𝑏. Since each 𝑎, 𝑏 ∈

[0,1] has 
1

|[0,1]|
 chance of occurrence, then by rule of product there is a 

𝑎+𝑏

|[0,1]|2 chance that 

one ends up picking the particular pair of 𝑎, 𝑏 and a random 𝑐 that satisfies 𝑎 + 𝑏 + 𝑐 ≥

1. With sum rule, we can sum up the probability of all the different combinations of 𝑎, 𝑏 

to find the total possibility of a randomly picked pair (𝑎, 𝑏), and a randomly picked 𝑐 

satisfying scenario 3: 

∑ ∑
𝑎𝑖 + 𝑏𝑗

|[0,1)|2

|[0,1)|

𝑗=1

|[0,1)|

𝑖=1

= ∫ ∫(𝑥 + 𝑦)𝑑𝑦

1

0

𝑑𝑥

1

0

= ∫(
1

2
+ 𝑥)𝑑𝑥

1

0

=
1

2
+

1

2
= 1 

But wait, how can this be 1? If the probability for the occurrence of scenario 3 is 1, then 

shouldn’t it always take three picks to reach 1? Of course not. Looking closely, the fact 

that 𝑎 + 𝑏 alone cannot exceed 1 has been ignored. In fact, after the first pick 𝑎 ∈ [0,1], 

in order for 𝑎 + 𝑏 < 1, 𝑏 must be less than 1 − 𝑎. Then the range of 𝑏 is reduced to 

[0, 1 − 𝑎). Taking into account of this, the original formula becomes: 

ℙ(3) = ∑ ∑
𝑎𝑖 + 𝑏𝑗

|[0,1]|2

|[0,1−𝑎𝑖)|

𝑗=1

|[0,1)|

𝑖=1

= ∫ ∫ (𝑥 + 𝑦)𝑑𝑦

1−𝑥

0

𝑑𝑥

1

0

= ∫ (𝑥𝑦 +
𝑦2

2
) |

1 − 𝑥

𝑦 = 0
𝑑𝑥

1

0

 

= ∫ (𝑥(1 − 𝑥) +
(1 − 𝑥)2

2
) 𝑑𝑥

1

0

= ∫ (
1

2
−

𝑥2

2
) 𝑑𝑥

1

0

=
1

2
−

𝑥3

6
|
1

0
=

1

2
−

1

6
=

1

3
 

4. It takes four picks to reach 1. 

Consider numbers 𝑎, 𝑏, 𝑐, 𝑑 ∈ [0,1], such that 𝑎 + 𝑏 < 1, 𝑎 + 𝑏 + 𝑐 < 1, 𝑎 + 𝑏 + 𝑐 +

𝑑 ≥ 1. That is, ∀(𝑎, 𝑏, 𝑐, 𝑑) ∈ [0,1]4, if (𝑎, 𝑏, 𝑐, 𝑑) satisfies scenario 4, then:  

𝑎 ∈ [0,1), 𝑏 ∈ [0,1 − 𝑎), 𝑐 ∈ [0,1 − 𝑎 − 𝑏), 𝑑 ∈ [1 − 𝑎 − 𝑏 − 𝑐, 1] holds. With given 

values of 𝑎, 𝑏, 𝑐, the probability of 𝑑 satisfying scenario 4 will again be 𝑎 + 𝑏 + 𝑐. And to 

count the total probability, we again sum up all the respective probability of the valid 

pairs of (𝑎, 𝑏, 𝑐) and a random 𝑑 satisfying scenario 4. That gives: 



ℙ(4) = ∑ ∑ ∑
𝑎𝑖 + 𝑏𝑗 + 𝑐𝑘

|[0,1]|3

|[0,1−𝑎𝑖−𝑏𝑗]|

𝑘=1

|[0,1−𝑎𝑖)|

𝑗=1

|[0,1)|

𝑖=1

= ∫ ∫ ∫ (𝑥 + 𝑦 + 𝑧)𝑑𝑧

1−𝑥−𝑦

0

𝑑𝑦

1−𝑥

0

𝑑𝑥

1

0

 

= ∫ ∫ (𝑥𝑧 + 𝑦𝑧 +
𝑧2

2
) |

1 − 𝑥 − 𝑦

𝑧 = 0
𝑑𝑦

1−𝑥

0

𝑑𝑥

1

0

 

= ∫ ∫ (𝑥 − 𝑥2 − 2𝑥𝑦 + 𝑦 − 𝑦2 +
1 − 2 𝑥 + 𝑥2 − 2 𝑦 + 2𝑥𝑦 + 𝑦2

2
) 𝑑𝑦

1−𝑥

0

𝑑𝑥

1

0

 

= ∫ ∫ (
1

2
−

𝑥2

2
−

𝑦2

2
− 𝑥𝑦) 𝑑𝑦

1−𝑥

0

𝑑𝑥

1

0

 

= ∫ (
1

2
𝑦 −

𝑥2𝑦

2
−

𝑦3

6
−

𝑥𝑦2

2
) |

1 − 𝑥

𝑦 = 0
𝑑𝑥

1

0

 

= ∫ (
1

2
(1 − 𝑥) −

𝑥2(1 − 𝑥)

2
−

(1 − 𝑥)3

6
−

𝑥(1 − 𝑥)2

2
) 𝑑𝑥

1

0

 

= ∫ (
𝑥3

6
−

𝑥

2
+

1

3
) 𝑑𝑥

1

0

= (
𝑥4

24
−

𝑥3

4
+

𝑥

3
) |

1

0
=

1 − 6 + 8

24
=

1

8
 

5. It takes five picks to reach 1. 

ℙ(5) = ∫ ∫ ∫ ∫ (𝑥 + 𝑦 + 𝑧 + 𝑤)𝑑𝑤

1−𝑥−𝑦−𝑤

0

𝑑𝑧

1−𝑥−𝑦

0

𝑑𝑦

1−𝑥

0

𝑑𝑥

1

0

=
1

30
 

(This is already too complicated to compute by hand, so I used an online integrator to 

find the answer) 

6. It takes six picks to reach 1. 

(At this point not even the online integrator can handle the integration, so I used a 

numerical simulation instead) 

a = 0 
b = 0 
c = 0.0 
d = 0.0 
import random 
for i in range(0,100000000): 
    a+=random.random() 



    b+=1 
    if(a>=1): 
        d+=1 
        if(b==6): 
            c+=1 
        b=0 
        a=0 
 
print c/d 
 

The approximated result is 0.00697 …, which is between  
1

145
 and 

1

143
. 

… 

n. It takes 𝑛 picks to reach 1.  

 

As we have observed, for each pick before the 𝑛𝑡ℎ one, its value summed with all 

previous picks cannot exceed 1. That gives us the formula 

∀𝑚 ∈ [𝑛 − 1], 𝑝𝑚 ∈ [0, 1 − ∑ 𝑝𝑖)

𝑚−1

𝑖=1

 

And for the last pick, its sum with all previous terms have to be greater or equal to 1, 

which means: 

𝑝𝑛 ∈ [1 − ∑ 𝑝𝑖

𝑛−1

𝑖=1

, 1] 

Because of 𝑝𝑛 is picked randomly between 0 and 1, the probability of a valid 𝑝𝑛 is 

(1 − (1 − ∑ 𝑝𝑖
𝑛−1
𝑖 ))

1 − 0
= ∑ 𝑝𝑖

𝑛−1

𝑖=1

 

. Now for a specific set of {𝑝𝑖}𝑖∈[𝑛−1], since each 𝑝𝑖 is picked from an event space of 

[0,1], which contains |[0,1]| elements, the set {𝑝𝑖}𝑖∈[𝑛−1] has a chance of 
1

|[0,1]|𝑛−1 to 

emerge from a random pick. By rule of product, for any specified set  {𝑝𝑖}𝑖∈[𝑛−1], there is 

a chance of 
∑ 𝑝𝑖

𝑛−1
𝑖

|[0,1]|𝑛−1
 for us to encounter it along with an ending pick 𝑝𝑛 that falls in the 

valid range [1 − ∑ 𝑝𝑖
𝑛−1
𝑖 , 1]. 

 

If we union all the valid cases different combinations of {𝑝𝑖}𝑖∈[𝑛−1] constitute, we can 

cover the whole event space. Thus, by summing up their individual probabilities, which 

automatically excludes the ones with 𝑝𝑖, 𝑖 ∈ [𝑚 − 1] outside their valid range, the total 

probability of case n. can be obtained. 

 



Denoting the real space of [0,1] with uniform mapping  {𝑎𝑖|𝑖 ∈ [|[0,1]|], 𝑎𝑖 =
𝑖

|[0,1]|
}, 

then we have: 

 

ℙ(𝑛) = ∑ ∑ … ∑
∑ 𝑎𝑖𝑗

𝑛−1
𝑗=1

|[0,1]|𝑛−1

|[0,1−∑ 𝑎𝑖𝑗
𝑛−2
𝑗=1 )|

𝑖𝑛−1=1

|[0,1−𝑎𝑖1)|

𝑖2=1

|[0,1)|

𝑖1=1

 

 

= ∫ ∫ …⏟
𝑛−4

∫ ∑ 𝑝𝑗

𝑛−1

𝑗=1

𝑑𝑝𝑛−1 …⏟
𝑛−4

𝑑𝑝2𝑑𝑝1

1−∑ 𝑝𝑖
𝑛−2
𝑖=1

0

1−𝑝1

0

1

0

 

Once the probability of all the scenarios are computed, which ranges from “it takes 1 pick to 

reach 1” to “it takes ∞ picks to reach 1”, a weighted average can be computed to find the average 

count of numbers needed to sum up to 1: 

𝐶̅ = ∑ ℙ(𝑛) ∗ 𝑛

∞

𝑛=1

= ∑ [∫ ∫ …⏟
𝑛−4

∫ ∑ 𝑝𝑗

𝑛−1

𝑗=1

𝑑𝑝𝑛−1 …⏟
𝑛−4

𝑑𝑝2𝑑𝑝1

1−∑ 𝑝𝑖
𝑛−2
𝑖=1

0

1−𝑝1

0

1

0

] ∗ 𝑛

∞

𝑛=1

 

 

Calculation 
Now one may be wondering, if ℙ(5) in the previous discussion was already too 

complicated to be solved by hand, how are we going to find the accurate value for ℙ(6), let 

alone ℙ(∞)? 

We can begin by looking at the first few terms of ℙ: 0,
1

2
,

1

3
,

1

8
,

1

30
,

1

145
~

1

143
, … After 

several tries, it turns out that ℙ(𝑛) =
𝑛−1

𝑛!
 seems to be a fitting guess: 

1 − 1

1!
= 1;

2 − 1

2!
=

1

2
; … ;

5 − 1

5!
=

4

120
=

1

30
;
6 − 1

6!
=

5

720
= 144 

With the observed pattern, we can form the hypothesis that: 

𝐻0: ∀𝑛 ∈ ℕ, ℙ(𝑛) = ∫ …⏟
𝑛−3

∫ ∑ 𝑝𝑗

𝑛−1

𝑗=1

𝑑𝑝𝑛−1 …⏟
𝑛−3

𝑑𝑝1

1−∑ 𝑝𝑖
𝑛−2
𝑖=1

0

1

0

=
𝑛 − 1

𝑛!
 

Although 𝑛 ∈ ℕ here does suggest the use of induction, the actual implementation of the 

technique would be a challenge. If one assumes that the statement holds for some 𝑘 ∈ ℕ, trying 

to get to 𝑘 + 1 would potentially require the rearrangement of the integrals, which cannot happen 

because of the dependency of variables between the limits, or insert another layer of integration, 



which cannot be easily done without expanding out each level of integration. Thus, this 

expression requires further simplification. 

Looking at the expression 
𝑛−1

𝑛!
, intuition suggested the separation of numerators: 

𝑛

𝑛!
−

1

𝑛!
, which 

gives 
1

(𝑛−1)!
−

1

𝑛!
. Equivalating the two sides gives: 

∀𝑛 ∈ ℕ, ℙ(𝑛) = ∫ …⏟
𝑛−3

∫ ∑ 𝑝𝑗

𝑛−1

𝑗=1

𝑑𝑝𝑛−1 …⏟
𝑛−3

𝑑𝑝1

1−∑ 𝑝𝑖
𝑛−2
𝑖=1

0

1

0

=
1

(𝑛 − 1)!
−

1

𝑛!
 

I then manipulated the left side of the equation to find a pattern that corresponds to that of the 

right: 

∫ … ∫ (1 − (1 − ∑ 𝑝𝑗

𝑛−1

𝑗=1

)) 𝑑𝑝𝑛−1 … 𝑑𝑝1

1−∑ 𝑝𝑖
𝑛−2
𝑖=1

0

1

0

=
1

(𝑛 − 1)!
−

1

𝑛!
 

⇒ ∫ … ∫ 𝑑𝑝𝑛−1 … 𝑑𝑝1

1−∑ 𝑝𝑖
𝑛−2
𝑖=1

0

1

0

− ∫ … ∫ (1 − ∑ 𝑝𝑗

𝑛−1

𝑗=1

) 𝑑𝑝𝑛−1 … 𝑑𝑝1

1−∑ 𝑝𝑖
𝑛−2
𝑖=1

0

1

0

=
1

(𝑛 − 1)!
−

1

𝑛!
 (sum rule); 

 

Observe that 1 − ∑ 𝑝𝑗

𝑛−1

𝑗=1

 is equivalent to ∫ 𝑑𝑥

 1−∑ 𝑝𝑗
𝑛−1
𝑗=1

0

, where 𝑥 can be any variable,  

we can substitute 1 − ∑ 𝑝𝑗

𝑘−1

𝑗=1

 with ∫ 𝑑𝑝𝑘

 1−∑ 𝑝𝑗
𝑘−1
𝑗=1

0

, yielding: 

∫ … ∫ 𝑑𝑝𝑛−1 … 𝑑𝑝1

1−∑ 𝑝𝑖
𝑛−2
𝑖=1

0

1

0

− ∫ … ∫ 𝑑𝑝𝑛 … 𝑑𝑝1

1−∑ 𝑝𝑖
𝑛−1
𝑖=1

0

1

0

=
1

(𝑛 − 1)!
−

1

𝑛!
         (1) 

 

Now a really elegant pattern emerges. It seems like ∫ … ∫ 𝑑𝑝𝑛−1 … 𝑑𝑝1

1−∑ 𝑝𝑖
𝑛−2
𝑖=1

0

1

0

naturally  

corresponds with the value of 
1

(n − 1)!
, and similarly ∫ … ∫ 𝑑𝑝𝑛 … 𝑑𝑝1

1−∑ 𝑝𝑖
𝑛−1
𝑖=1

0

1

0

 with 
1

𝑛!
. 

If this correspondence is established, the original hypothesis 𝐻0 can be revised into: 



𝐻1: ∀𝑛 ∈ ℕ, ∫ … ∫ 𝑑𝑝𝑛 … 𝑑𝑝1

1−∑ 𝑝𝑖
𝑛−1
𝑖=1

0

1

0

=
1

𝑛!
 

Notice that due to the symmetry on both sides of the minus sign in (1), proving 𝐻1 to be 

true automatically validates the whole equation 1, and thus 𝐻0. Thus, we can establish the 

relation: 𝐻1 ⇒ 𝐻0. 

 

The statement 𝐻1, nevertheless, is still too complicated to form a useful induction 

hypothesis. Meanwhile, computing the integral directly may yield some interesting 

regularities: 

∫ … ∫ 𝑑𝑝𝑛 … 𝑑𝑝1

1−∑ 𝑝𝑖
𝑛−1
𝑖=1

0

1

0

= ∫ … ∫ (1 − ∑ 𝑝𝑖

𝑛−1

𝑖=1

) 𝑑𝑝𝑛−1 … 𝑑𝑝1

1−∑ 𝑝𝑖
𝑛−2
𝑖=1

0

1

0

 

= ∫ … ∫ (1 − ∑ 𝑝𝑖

𝑛−2

𝑖=1

)𝑑𝑝𝑛−1 … 𝑑𝑝1

1−∑ 𝑝𝑖
𝑛−2
𝑖=1

0

1

0

− ∫ … ∫ 𝑝𝑛−1𝑑𝑝𝑛−1 … 𝑑𝑝1

1−∑ 𝑝𝑖
𝑛−2
𝑖=1

0

1

0

 

= ∫ … ∫ (1 − ∑ 𝑝𝑖

𝑛−2

𝑖=1

)(1 − ∑ 𝑝𝑖

𝑛−2

𝑖=1

)𝑑𝑝𝑛−2 … 𝑑𝑝1

1−∑ 𝑝𝑖
𝑛−3
𝑖=1

0

1

0

− ∫ … ∫
(1 − ∑ 𝑝𝑖

𝑛−2
𝑖=1 )2

2
𝑑𝑝𝑛−2 … 𝑑𝑝1

1−∑ 𝑝𝑖
𝑛−3
𝑖=1

0

1

0

 

= ∫ … ∫
(1 − ∑ 𝑝𝑖

𝑛−2
𝑖=1 )2

2
𝑑𝑝𝑛−2 … 𝑑𝑝1

1−∑ 𝑝𝑖
𝑛−3
𝑖=1

0

1

0

= ⋯ 

 

In the series of computation, the innermost function being integrated were: 

{1, (1 − ∑ 𝑝𝑖

𝑛−1

𝑖=1

) ,
(1 − ∑ 𝑝𝑖

𝑛−2
𝑖=1 )2

2
, … }  

, which is suggestive of the sequence: 

𝑆 = {
1

𝑎!
(1 − ∑ 𝑝𝑖

𝑛−𝑎

𝑖=1

)

𝑎

}

𝑎∈[𝑛]∪{0}

 

The elegance of this sequence is that with each 𝑘 we use, we get directly the innermost 

function that resulted from 𝑘 kevels of integrations with minimal calculation. Using this 

sequence, we can formulate another hypothesis 𝐻2, which states that: 



∀𝑛 ∈ ℕ, ∀𝑎 ∈ [𝑛], ∫ … ∫ 𝑑𝑝
𝑛

… 𝑑𝑝
𝑛−𝑎+1

1−∑ 𝑝𝑖
𝑛−1
𝑖=1

0

1−∑ 𝑝𝑖
𝑛−𝑎
𝑖=1

0

=
1

𝑎!
(1 − ∑ 𝑝𝑖

𝑛−𝑎

𝑖=1

)

𝑎

 

And note that when we equivalate the value of 𝑎 in this expression to 𝑛, we obtain: 

 ∫ … ∫ 𝑑𝑝𝑛 … 𝑑𝑝𝑛−𝑘+1

1−∑ 𝑝𝑖
𝑛−1
𝑖=1

0

1−∑ 𝑝𝑖
𝑛−𝑛
𝑖=1

0

=
1

𝑛!
(1 − ∑ 𝑝𝑖

𝑛−𝑛

𝑖=1

)

𝑛

 

⇒ ∫ … ∫ 𝑑𝑝𝑛 … 𝑑𝑝𝑛−𝑘+1

1−∑ 𝑝𝑖
𝑛−1
𝑖=1

0

1

0

=
1

𝑛!
(1 − 0)𝑛 =

1

𝑛!
 

which states exactly 𝐻1, thus giving us 𝐻2 ⇒ 𝐻1. 

Now 𝐻2, carrying a simple form and sufficient information, seems like a good place to start using 

induction proof: 

Let 𝑛 ∈ ℕ be arbitrary, fix 𝑛. Let 𝐼(𝑎) be the statement that 

∫ … ∫ 𝑑𝑝𝑛 … 𝑑𝑝𝑛−𝑎+1

1−∑ 𝑝𝑖
𝑛−1
𝑖=1

0

1−∑ 𝑝𝑖
𝑛−𝑎
𝑖=1

0

=
1
𝑎!

(1 − ∑ 𝑝𝑖

𝑛−𝑎

𝑖=1

)

𝑎

. 

To show that 𝐼(𝑎) is true for all 𝑎 ∈ [𝑛], we first investigate the base case: 

∫ … ∫ 𝑑𝑝𝑛 … 𝑑𝑝𝑛−𝑎+1

1−∑ 𝑝𝑖
𝑛−1
𝑖=1

0

1−∑ 𝑝𝑖
𝑛−𝑎
𝑖=1

0

= ∫ 𝑑𝑝𝑛

1−∑ 𝑝𝑖
𝑛−1
𝑖=1

0

= 1 − ∑ 𝑝𝑖

𝑛−1

𝑖=1

=
1

1!
(1 − ∑ 𝑝𝑖

𝑛−1

𝑖=1

)

1

=
1

𝑎!
(1 − ∑ 𝑝𝑖

𝑛−𝑎

𝑖=1

)

𝑎

⇒ 𝐼(1) 

 

Inductive step: 

Assume 𝐼(𝑘) ⇔ ∫ … ∫ 𝑑𝑝𝑛 … 𝑑𝑝𝑛−𝑘+1

1−∑ 𝑝𝑖
𝑛−1
𝑖=1

0

1−∑ 𝑝𝑖
𝑛−𝑘
𝑖=1

0

=
1

𝑘!
(1 − ∑ 𝑝𝑖

𝑛−𝑘

𝑖=1

)

𝑘

for some 𝑘 ∈ [𝑛 − 1]. 

Then ∫ … ∫ 𝑑𝑝𝑛 … 𝑑𝑝𝑛−(𝑘+1)+1

1−∑ 𝑝𝑖
𝑛−1
𝑖=1

0

1−∑ 𝑝𝑖
𝑛−(𝑘+1)
𝑖=1

0

 

= ∫ ∫ … ∫ 𝑑𝑝
𝑛

… 𝑑𝑝
𝑛−𝑘+1

1−∑ 𝑝𝑖
𝑛−1
𝑖=1

0

1−∑ 𝑝𝑖
𝑛−𝑘
𝑖=1

0

𝑑𝑝
𝑛−𝑘

1−∑ 𝑝𝑖
𝑛−(𝑘+1)
𝑖=1

0

 



= ∫
1

𝑘!
(1 − ∑ 𝑝

𝑖

𝑛−𝑘

𝑖=1

)

𝑘

𝑑𝑝
𝑛−𝑘

1−∑ 𝑝𝑖
𝑛−(𝑘+1)
𝑖=1

0

 

Because variables {𝑝𝑖}𝑖∈[𝑛] are independent to each other, and this integration concerns 

only with the increment 𝑑𝑝𝑛−𝑘, all variables here besides 𝑝𝑛−𝑘 can be treated as constants, 
yielding: 

𝑑(1 − ∑ 𝑝𝑖
𝑛−𝑘
𝑖=1 )

𝑑𝑝𝑛−𝑘
=

𝑑(1 − ∑ 𝑝𝑖
𝑛−𝑘−1
𝑖=1 − 𝑝𝑛−𝑘)

𝑑𝑝𝑛−𝑘
= −1 ⇒ 𝑑𝑝𝑛−𝑘 = −𝑑 (1 − ∑ 𝑝𝑖

𝑛−𝑘

𝑖=1

) 

And substituting it back gives: 

∫ … ∫ 𝑑𝑝𝑛 … 𝑑𝑝𝑛−(𝑘+1)+1

1−∑ 𝑝𝑖
𝑛−1
𝑖=1

0

1−∑ 𝑝𝑖
𝑛−(𝑘+1)
𝑖=1

0

 

= ∫ −
1

𝑘!
(1 − ∑ 𝑝

𝑖

𝑛−𝑘

𝑖=1

)

𝑘

𝑑 (1 − ∑ 𝑝𝑖

𝑛−𝑘

𝑖=1

)

1−∑ 𝑝𝑖
𝑛−(𝑘+1)
𝑖=1

0

 

= −
1

𝑘! ∗ (𝑘 + 1)
(1 − ∑ 𝑝

𝑖

𝑛−𝑘

𝑖=1

)

𝑘+1

||
1 − ∑ 𝑝𝑖

𝑛−(𝑘+1)

𝑖=1

𝑝
𝑛−𝑘

= 0

 

= −
1

(𝑘 + 1)!
(1 − ∑ 𝑝

𝑖

𝑛−𝑘−1

𝑖=1

− 𝑝
𝑛−𝑘

)

𝑘+1

||
1 − ∑ 𝑝𝑖

𝑛−(𝑘+1)

𝑖=1

𝑝
𝑛−𝑘

= 0

 

= −
1

(𝑘 + 1)!
(1 − ∑ 𝑝𝑖

𝑛−𝑘−1

𝑖=1

− (1 − ∑ 𝑝𝑖

𝑛−(𝑘+1)

𝑖=1

))

𝑘+1

− (−
1

(𝑘 + 1)!
(1 − ∑ 𝑝𝑖

𝑛−𝑘−1

𝑖=1

− 0)

𝑘+1

) 

= −
1

(𝑘 + 1)!
((1 − ∑ 𝑝𝑖

𝑛−𝑘−1

𝑖=1

) − (1 − ∑ 𝑝𝑖

𝑛−𝑘−1

𝑖=1

))

𝑘+1

+
1

(𝑘 + 1)!
(1 − ∑ 𝑝𝑖

𝑛−(𝑘+1)

𝑖=1

− 0)

𝑘+1

 

= −
1

(𝑘 + 1)!
∗ 0 +

1

(𝑘 + 1)!
(1 − ∑ 𝑝𝑖

𝑛−(𝑘+1)

𝑖=1

− 0)

𝑘+1

=
1

(𝑘 + 1)!
(1 − ∑ 𝑝𝑖

𝑛−(𝑘+1)

𝑖=1

− 0)

𝑘+1

. 

⇒ 𝐼(𝑘 + 1). 



Since 𝐼(1) is true, and from 𝐼(𝑘), 𝑘 ∈ [𝑛 − 1], one can obtain 𝐼(𝑘 + 1), 𝑘 + 1 ∈ [𝑛], by principle of 

mathematical induction, we can conclude that: 

∀𝑎 ∈ [𝑛], ∫ … ∫ 𝑑𝑝
𝑛

… 𝑑𝑝
𝑛−𝑎+1

1−∑ 𝑝𝑖
𝑛−1
𝑖=1

0

1−∑ 𝑝𝑖
𝑛−𝑎
𝑖=1

0

=
1

𝑎!
(1 − ∑ 𝑝𝑖

𝑛−𝑎

𝑖=1

)

𝑎

, 

and since 𝑛 ∈ ℕ is arbitrary, we know  

𝐻2 ⇔ ∀𝑛 ∈ ℕ, ∀𝑎 ∈ [𝑛], ∫ … ∫ 𝑑𝑝
𝑛

… 𝑑𝑝
𝑛−𝑎+1

1−∑ 𝑝𝑖
𝑛−1
𝑖=1

0

1−∑ 𝑝𝑖
𝑛−𝑎
𝑖=1

0

=
1

𝑎!
(1 − ∑ 𝑝𝑖

𝑛−𝑎

𝑖=1

)

𝑎

 

holds, and hence 𝐻2 ⇒ 𝐻1 ⇒ 𝐻0 ⇒ ℙ(𝑛) = ∫ …⏟
𝑛−3

∫ ∑ 𝑝
𝑗

𝑛−1

𝑗=1

𝑑𝑝
𝑛−1

…⏟
𝑛−3

𝑑𝑝
1

1−∑ 𝑝𝑖
𝑛−2
𝑖=1

0

1

0

=
𝑛 − 1

𝑛!
 

Now with this pattern shown true, one can acquire the average quantity of random pick with 

aforementioned formula: 

𝐶̅ = ∑ ℙ(𝑛) ∗ 𝑛

∞

𝑛=1

= ∑
𝑛 − 1

𝑛!
∗ 𝑛

∞

𝑛=1

= ∑
𝑛 − 1

(𝑛 − 1)!

∞

𝑛=1

=
1 − 1

(1 − 1)!
+ ∑

1

(𝑛 − 2)!

∞

𝑛=2

= 0 + ∑
1

𝑚!

∞

𝑚=0

= 𝑒, 

and hence the desired result. 

Conclusion 
This result, although requiring some complicated deduction to arrive at, shows that 𝑒 indeed 

exists in nature at places like probability. And for a side note, when infinite picks are allowed, 

one will be bound to end up with a sum of 1. That means the sum of the probability ℙ of all the 

possible events will be 1. To see that, we have: 

∑ ℙ(𝑛)

∞

𝑛=1

= ∑
𝑛 − 1

𝑛!

∞

𝑛=1

= ∑
𝑛

𝑛!

∞

𝑛=1

− ∑
1

𝑛!

∞

𝑛=1

= ∑
1

(𝑛 − 1)!

∞

𝑛=1

− ∑
1

𝑛!

∞

𝑛=1

 

=
1

(1 − 1)!
+ (∑

1

(𝑛 − 1)!

∞

𝑛=2

− ∑
1

𝑛!

∞

𝑛=1

) = 1, 

exemplifying the correctness of probability. Besides connecting 𝑒 to natural events, through this 

calculation we also see the power of thinking. In terms of computation, numerically solving an 

integration, which involves summing together infinite terms, demands a complexity of O(∞), 

solving a double integral O(∞2), and an infinitely nested integral O(∞∞). And for our problem, 

we are taking a sum of the results of infinitely many infinite integrals, which means the 

complexity will be approximately O(∞ ∗ ∞∞). With this tendency, even if we try to obtain an 

approximated result from finite computations, the time complexity O(𝑛𝑛) is still substantial. 

However, with the creativity and knowledge of the mind, one can tackle a problem with 

complexity that goes far beyond the capabilities of a computer. And creativity rooted in 



understanding is something that not even artificial intelligence today possess, and perhaps never 

will. And, hence, this problem reminds us that, even in this world where almost everything can 

be looked up online, knowledge will always have its place.  


